Der Zehnkampf gilt als die Königsdisziplin der Leichtathletik. Die Internationale Leichtathletik-Mehrkampfwertung der IAAF (International Amateur Athletics Federation) bewertet jede Leistung in den zehn Wettbewerben. Die Leistungen aus zehn Wettbewerben werden aggregiert und zu einer Punktzahl zusammengefasst. Die aktuelle Wertungstabelle wird international seit 1985 angewandt. Die IAAF-Wettbewerbstabelle basiert auf statistischen Analysen der Leistungen in den Einzeldisziplinen. … „Decathlon: Zehnkampf aus statistischer Sicht unter Corona-Bedingungen“ weiterlesen
Kategorie: Regression
Flaschenhälse (langsame Code-Abschnitte) in R finden mit Profiling: profvis
Wenn R-Code zu langsam läuft, sind es oft nur ganz bestimmte Stellen, die optimiert werden müssen. Nicht immer ist sofort klar, welche Codezeilen das sind. Daher ist es sinnvoll zu wissen, wie man solche Flaschenhälse (oder „Bremsklötze“) effizient und elegant finden kann. Ein hilfreiches Werkzeug dafür ist das sogenannte Profiling: Das automatisierte Erstellen eines Profils, … „Flaschenhälse (langsame Code-Abschnitte) in R finden mit Profiling: profvis“ weiterlesen
Verdeckte Korrelationen sichtbar machen in R mit linearen Modellen
Nach meinem Eindruck erhalten verdeckte Korrelationen weniger Aufmerksamkeit als ihre bekannteren Kollegen, die Scheinkorrelationen. Dabei stellen beide Phänomene ähnliche Herausforderungen für die Datenanalyse dar. Eine verdeckte Korrelation liegt vor, wenn ein Zusammenhang zwischen zwei Variablen besteht, aber nicht direkt sichtbar wird, weil er von (mindestens) einer anderen Variable verdeckt oder überlagert wird. Kein Zusammenhang zwischen … „Verdeckte Korrelationen sichtbar machen in R mit linearen Modellen“ weiterlesen
Scheinkorrelationen aufdecken in R mit linearen Regressionsmodellen
Störche bringen Babies – das wohl bekannteste Beispiel der Statistik für eine klassische Scheinkorrelation. Der Zusammenhang ist tatsächlich statistisch nachweisbar – es handelt sich jedoch (nach heutigem Wissen) nicht um einen Kausalzusammenhang. Auch wenn uns das inhaltlich bekannt ist – wie können wir das statistisch belegen? In anderen Anwendungsfällen wird uns inhaltlich vielleicht nicht so … „Scheinkorrelationen aufdecken in R mit linearen Regressionsmodellen“ weiterlesen
Schleifen parallelisieren in R mit foreach
Schleifen haben einen schlechten Ruf in R: Sie gelten nicht zu unrecht als langsam. Oft ist es möglich, Schleifen zu vermeiden, etwa durch vektorisierte Funktionen, mit Funktionen aus der apply-Familie (wie lapply) oder mit map-Funktionen aus dem purrr-Paket. Manchmal wäre es jedoch recht aufwändig, R-Code so umzuschreiben, dass Schleifen eliminiert werden. Dann ist es nützlich, … „Schleifen parallelisieren in R mit foreach“ weiterlesen
R-Code parallelisieren mit parallel::clusterApply()
R-Code ist oft schnell zu schreiben, aber nicht immer schnell genug in der Ausführung. Eine Methode, dem abzuhelfen, besteht darin, R-Code zu parallelisieren, d. h. mehrere Prozessorkerne oder mehrere Arbeiter einzusetzen. Das parallel-Paket, das zur Base-R-Installation gehört, bietet mit der clusterApply()-Funktion eine elegante Möglichkeit. Parallelisierung: Vorgehen und Vorbereitung Ziel ist es, 200 Regressionsmodelle mit jeweils … „R-Code parallelisieren mit parallel::clusterApply()“ weiterlesen
Große Datenmengen visualisieren mit R, ggplot2 und trelliscopejs
Datenvisualisierung: Wie kann man große Datenmengen in R so darstellen, dass sie gut lesbar sind und viele Informationen preisgeben? „Große Datenmengen“ verstehen wir hier im Sinne von „viele Untergruppen“, nicht unbedingt im Sinne von vielen Gigabyte. Wer versiert ist, denkt vielleicht an eine Shiny App, die große Flexibilität und viele Nutzereinstellungen erlaubt. Wir suchen heute … „Große Datenmengen visualisieren mit R, ggplot2 und trelliscopejs“ weiterlesen
Elegante R-Programmierung mit purrr::map und genisteten Datensätzen
2016 machte Hadley Wickham eine Idee populär, von der er zunächst selbst nicht sicher war, ob sie gut ist: genistete Datensätze (nested data frames). Das Prinzip ist einfach: Eine Spalte eines Datensatzes kann selbst ein Datensatz sein. Was zunächst umständlich oder verwirrend klingt, kann zum mächtigen Werkzeug werden – vor allem, wenn man viele gleich … „Elegante R-Programmierung mit purrr::map und genisteten Datensätzen“ weiterlesen
Machine Learning-Algorithmen verstehen: Interaktionseffekte
Machine Learning-Algorithmen zu verstehen ist eine Herausforderung. Mit dem folgenden Text möchte ich einen Beitrag dazu leisten, indem ich ein Spezialthema betrachte: Wie gehen verschiedene Machine Learning-Algorithmen mit Interaktionseffekten um? Folgende Machine-Learning-Algorithmen werden betrachtet: Lineare Regression GAM = Generalized Additive Model KNN = K nächste Nachbarn = k nearest neighbors Ein einzelner Entscheidungsbaum (rpart) Ein … „Machine Learning-Algorithmen verstehen: Interaktionseffekte“ weiterlesen
Regressionsmodelle visualisieren in R: Mit Interaktionseffekten, 3D (ggplot2, plotly)
Regressionsmodelle sind nach wie vor sehr populär in der Statistik, dem Data Mining, Data Science und Machine Learning – das belegen aktuelle Zahlen, die KDNuggets kürzlich via Twitter präsentierte: Heute geht es um Möglichkeiten, solche Modelle mit der frei erhältlichen Software R / RStudio zu visualisieren. Wir nutzen den weit verbreiteten Datensatz mtcars, der in … „Regressionsmodelle visualisieren in R: Mit Interaktionseffekten, 3D (ggplot2, plotly)“ weiterlesen