Machine Learning-Algorithmen zu verstehen ist eine Herausforderung. Mit dem folgenden Text möchte ich einen Beitrag dazu leisten, indem ich ein Spezialthema betrachte: Wie gehen verschiedene Machine Learning-Algorithmen mit Interaktionseffekten um? Folgende Machine-Learning-Algorithmen werden betrachtet: Lineare Regression GAM = Generalized Additive Model KNN = K nächste Nachbarn = k nearest neighbors Ein einzelner Entscheidungsbaum (rpart) Ein … „Machine Learning-Algorithmen verstehen: Interaktionseffekte“ weiterlesen
Schlagwort: maschinelles Lernen
R-Zertifizierung: Machine Learning (DataCamp)
Nun ist auch der Machine Learning-Kurs von DataCamp abgeschlossen. Es ging um die drei Themenbereiche Klassifikation, Regression und Clustering. Von maschinellem Lernen wird nur gesprochen, wenn ein Algorithmus ein Modell ermittelt, das auf andere Daten (z. B. künftige Beobachtungen) angewendet werden kann. Deskriptive Statistiken (häufigste Farbe, durchschnittliche Größe) zählen somit nicht zum maschinellen Lernen. Einige Kursinhalte: … „R-Zertifizierung: Machine Learning (DataCamp)“ weiterlesen
Was ist Overfitting? Regressionsanalyse mit R, nichtlineare Terme, Kreuzvalidierung
Lineare Regressionsmodelle können mit Hilfe von Polynomen auch nichtlineare Zusammenhänge abbilden. Die Modellanpassung im Sinne von R² und korrigiertem R² kann dadurch erheblich steigen. Doch ist ein solches Modell tatsächlich „besser“ als ein einfacheres? Ein Praxistest wäre, die Modellgleichung auf andere Daten anzuwenden. Oft stehen jedoch keine neuen Daten zur Verfügung, die genau die gleichen … „Was ist Overfitting? Regressionsanalyse mit R, nichtlineare Terme, Kreuzvalidierung“ weiterlesen
Statistiker, Mathematiker und Experten für Maschinelles Lernen denken unterschiedlich
Im Zeitalter von Big Data müssen die Fähigkeiten von Statistikern, Mathematikern und Experten für Maschinelles Lernen in immer stärkerem Maße verbunden werden, um „Datenschätze“ zu heben. Dabei kann es sehr hilfreich sein, sich der unterschiedlichen Denkweisen bewusst zu werden, die mit der jeweiligen Ausbildung einhergehen. Die folgende Geschichte veranschaulicht das eindrucksvoll. Arbeiten Statistiker, Data Scientists und … „Statistiker, Mathematiker und Experten für Maschinelles Lernen denken unterschiedlich“ weiterlesen
SPSS Modeler: Maschinenlernen vs. Statistische Modelle
Statistische Modelle beruhen auf mathematische Gleichungen, wobei ein Algorithmus die vorgegebenen Parameter schätzt. Moderner und flexibler sind Techniken zum Maschinenlernen. Sie werden auf Basis minimaler Anforderungen an die Modellstruktur und minimalen Annahmen für das Modell berechnet. Die Form der Beziehungen wird während des Lernprozesses bestimmt. Beispiel: Lineare Regression vs. Neuronales Netzwerk (Neural Network) Falls sich … „SPSS Modeler: Maschinenlernen vs. Statistische Modelle“ weiterlesen