Mit dem R-Paket ggstatsplot kann man sehr leicht Gruppenvergleiche mit statistischen Kennzahlen grafisch darstellen. Unterstützt werden Tests für abhängige und unabhängige Stichproben, parametrische und nichtparametrische Tests, robuste Tests sowie Bayes-Verfahren.
Mit dem R-Paket ggstatsplot kann man sehr leicht Gruppenvergleiche mit statistischen Kennzahlen grafisch darstellen. Unterstützt werden Tests für abhängige und unabhängige Stichproben, parametrische und nichtparametrische Tests, robuste Tests sowie Bayes-Verfahren.
Machine Learning-Algorithmen zu verstehen ist eine Herausforderung. Mit dem folgenden Text möchte ich einen Beitrag dazu leisten, indem ich ein Spezialthema betrachte: Wie gehen verschiedene Machine Learning-Algorithmen mit Interaktionseffekten um? Folgende Machine-Learning-Algorithmen werden betrachtet: Lineare Regression GAM = Generalized Additive Model KNN = K nächste Nachbarn = k nearest neighbors Ein einzelner Entscheidungsbaum (rpart) Ein … „Machine Learning-Algorithmen verstehen: Interaktionseffekte“ weiterlesen
Fragst Du Dich: Welcher statistische Test passt für meine Aufgabe, meine Daten, meine Fragestellung? Die Universität Zürich bietet eine empfehlenswerte Hilfestellung bei der Auswahl des geeigneten statistischen Tests bzw. der passenden multivariaten Analysemethode. In einem Entscheidungsbaum sind Unterschiedstests und Verfahren für Zusammenhangs- und Interdependenzanalysen dargestellt; farbliche Abstufungen berücksichtigen das Skalenniveau (nominalskaliert, ordinalskaliert oder intervallskaliert); zusätzlich … „Methodenberatung: Welcher statistische Test passt zu meiner Fragestellung und meinen Daten?“ weiterlesen
Angenommen, es liegen Daten in folgendem Format vor: ID Messzeitpunkt Messwert 1 1 7 1 2 10 2 1 4 2 2 3 … Nun soll überprüft werden, ob die Daten des ersten Messzeitpunkts sich signifikant vom zweiten Messzeitpunkt unterscheiden. Ganz einfach, könnte man meinen: t-Test, Testvariable=Messwert, Gruppe=Messzeitpunkt (Gruppe 1 = Zeitpunkt 1, … „Datenaufbereitung für abhängige Stichproben: long- und wide-Format“ weiterlesen
Bei Mittelwertvergleichen steht der Forscher oft vor der Frage, ob parametrische Verfahren wie der t-Test eingesetzt werden können oder ob auf nichtparametrische Tests wie den Mann-Whitney-U-Test ausgewichen werden muss. Parametrische Verfahren weisen eine höhere Teststärke auf, d. h. sie können tatsächlich vorhandene Unterschiede eher nachweisen, da sie mehr Informationen in den Daten nutzen. Ihr Nachteil … „T-Test oder U-Test?“ weiterlesen