Fragst Du Dich: Welcher statistische Test passt für meine Aufgabe, meine Daten, meine Fragestellung? Die Universität Zürich bietet eine empfehlenswerte Hilfestellung bei der Auswahl des geeigneten statistischen Tests bzw. der passenden multivariaten Analysemethode. In einem Entscheidungsbaum sind Unterschiedstests und Verfahren für Zusammenhangs- und Interdependenzanalysen dargestellt; farbliche Abstufungen berücksichtigen das Skalenniveau (nominalskaliert, ordinalskaliert oder intervallskaliert); zusätzlich … „Methodenberatung: Welcher statistische Test passt zu meiner Fragestellung und meinen Daten?“ weiterlesen
Schlagwort: U-Test
Signifikanztests bei Kreuztabellen: Kategorien sinnvoll zusammenfassen
Angenommen, Sie betreiben Marktforschung für eine Ladenkette, die Kühlschränke verkauft. Ihr Auftrag lautet, zwei Kundengruppen hinsichtlich ihres Kaufinteresses zu vergleichen. Sie erhalten folgende Kreuztabelle: Es gibt zwar gewisse Unterschiede zwischen den Kundengruppen (hier vereinfacht mit 0 und 1 bezeichnet), diese sind laut Chi-Quadrat-Test jedoch nicht signifikant (p=0,102). Ist der Auftrag damit bereits erledigt? Neu: Der … „Signifikanztests bei Kreuztabellen: Kategorien sinnvoll zusammenfassen“ weiterlesen
Datenaufbereitung für abhängige Stichproben: long- und wide-Format
Angenommen, es liegen Daten in folgendem Format vor: ID Messzeitpunkt Messwert 1 1 7 1 2 10 2 1 4 2 2 3 … Nun soll überprüft werden, ob die Daten des ersten Messzeitpunkts sich signifikant vom zweiten Messzeitpunkt unterscheiden. Ganz einfach, könnte man meinen: t-Test, Testvariable=Messwert, Gruppe=Messzeitpunkt (Gruppe 1 = Zeitpunkt 1, … „Datenaufbereitung für abhängige Stichproben: long- und wide-Format“ weiterlesen
T-Test oder U-Test?
Bei Mittelwertvergleichen steht der Forscher oft vor der Frage, ob parametrische Verfahren wie der t-Test eingesetzt werden können oder ob auf nichtparametrische Tests wie den Mann-Whitney-U-Test ausgewichen werden muss. Parametrische Verfahren weisen eine höhere Teststärke auf, d. h. sie können tatsächlich vorhandene Unterschiede eher nachweisen, da sie mehr Informationen in den Daten nutzen. Ihr Nachteil … „T-Test oder U-Test?“ weiterlesen