30 Jahre: Meilensteine der Programmiersprache R

Vor gut 30 Jahren wurde die Programmiersprache R veröffentlicht. Geschichte im Überblick: Meilensteine wie CRAN, UseR, ggplot2, ROpenSci, dplyr, R-Ladies, Shiny, tidyverse, Tidy Tuesday, Quarto, Posit, WebR, Positron, …

Vor gut 30 Jahren wurde die Programmiersprache R veröffentlicht. Geschichte im Überblick: Meilensteine wie CRAN, UseR, ggplot2, ROpenSci, dplyr, R-Ladies, Shiny, tidyverse, Tidy Tuesday, Quarto, Posit, WebR, Positron, …

R 4.4.0: Was ist neu?

R Version 4.4.0 enthält einige Neuerungen: elegante NULL-Abfragen mit %||% aus rlang, speichereffiziente rekursive Funktionen, Sicherheitspatch beim RDS-Format, und mehr. Fast zeitgleich erschien RStudio 2024.04.0.

R Version 4.4.0 enthält einige Neuerungen: elegante NULL-Abfragen mit %||% aus rlang, speichereffiziente rekursive Funktionen, Sicherheitspatch beim RDS-Format, und mehr. Fast zeitgleich erschien RStudio 2024.04.0.

Von SAS zu R in der Pharmaindustrie: Paradigmenwechsel!

In den Biowissenschaften und der Pharmaindustrie spielen Datenverarbeitung und insbesondere statistische Datenanalysen eine fundamentale Rolle. Seit Jahrzehnten dominierte dabei die kommerzielle Software SAS (Statistical Analysis System). Nun sind starke Initiativen auf mehreren Ebenen hin zum Einsatz von R in der Pharmaindustrie zu beobachten – verbunden mit einem erstaunlichen Kulturwandel!

In den Biowissenschaften und der Pharmaindustrie spielen Datenverarbeitung und insbesondere statistische Datenanalysen eine fundamentale Rolle. Seit Jahrzehnten dominierte dabei die kommerzielle Software SAS (Statistical Analysis System). Nun sind starke Initiativen auf mehreren Ebenen hin zum Einsatz von R in der Pharmaindustrie zu beobachten – verbunden mit einem erstaunlichen Kulturwandel!

6 Jahre R-Seminare / R-Kurse / R-Workshops: Erfahrungsbericht

Seit etwa 6 Jahren liegt mein beruflicher Fokus auf der Entwicklung und Durchführung von R-Workshops / R-Seminaren / R-Kursen. Zeit, über einige Erfahrungen zu reflektieren. R-Seminare: Wie kam es dazu? Nach dem Soziologie-Studium und einer kurz befristeten Stelle an der Medizinischen Fakultät der Universität Leipzig, wo ich Zusammenhänge von Lebensstilen und Ernährungsverhalten von Jugendlichen und … „6 Jahre R-Seminare / R-Kurse / R-Workshops: Erfahrungsbericht“ weiterlesen

SQL-Datenbanken mit R ansprechen: Drei Strategien

R bietet mehrere Möglichkeiten, mit Datenbanken zu kommunizieren. Dieser Artikel richtet sich sowohl an R-Anwender, die noch nicht von R aus mit Datenbanken gearbeitet haben, als auch an solche, die dies bereits tun, aber bisher nur eine Möglichkeit genutzt haben. So kann jedeR den Ansatz auswählen, der für den jeweiligen Anwendungsfall am besten passt. SQL … „SQL-Datenbanken mit R ansprechen: Drei Strategien“ weiterlesen

Fehlwerte visualisieren in R: Das naniar-Paket

Fehlwerte können große Herausforderungen in der Datenanalyse darstellen. Warum fehlen Datenpunkte? Welche Eigenschaften weisen diese Fälle auf im Vergleich zu Fällen, deren Daten vollständig vorliegen? Gibt es Muster, oder fehlen Daten „zufällig“? Visualisierung kann die Beantwortung solcher Fragen sehr vereinfachen. Das naniar-Paket von Nicholas Tierney bietet dafür sehr praktische Funktionen und ist eng mit dem … „Fehlwerte visualisieren in R: Das naniar-Paket“ weiterlesen

Balkendiagramme erstellen in Base R und mit ggplot2 – Gast-Video von Joachim Schork / Statistics Globe

Einfache Codebeispiele für Balkendiagramme in Base R und mit ggplot2, inkl. horizontaler Balken, Legende, gestapelte und gruppierte Balken. Beitrag basiert auf Gastvideo von Joachim Schork von Statistics Globe – Dank an Joachim!

Einfache Codebeispiele für Balkendiagramme in Base R und mit ggplot2, inkl. horizontaler Balken, Legende, gestapelte und gruppierte Balken. Beitrag basiert auf Gastvideo von Joachim Schork von Statistics Globe – Dank an Joachim!

Zeitreihen visualisieren in R: tidyquant / Amazon-Kurse in der Pandemie

Zeitreihenanalyse ist ein Spezialthema, das in R von spezialisierten Paketen abgedeckt wurde und wird.  So entstand eine Nische, die sich weitgehend unabhängig von neueren R-Paketen zur Datenanalyse entwickelte. tidyquant von Matt Dancho und Davis Vaughan baut eine Brücke zwischen zeitreihen-spezifischen Paketen wie quantmod, xts, zoo, PerformancAnalytics und TTR einerseits sowie dem tidyverse andererseits mit Paketen … „Zeitreihen visualisieren in R: tidyquant / Amazon-Kurse in der Pandemie“ weiterlesen

R 4.1.0: Base R Pipe! |>

Am 18.5.2021 wurde R Version 4.1.0 veröffentlicht, und sie brachte (fast) eine Revolution: Einen Pipe Operator, nativ in Base R eingebaut! Pipe Operator in R seit 2014: magrittr / dplyr Mit dem magrittr-Paket wurde 2014 der Pipe-Operator %>% in R zur Verfügung gestellt. Er hat sich rasch durchgesetzt und erfreut sich sehr großer Beliebtheit. Viele … „R 4.1.0: Base R Pipe! |>“ weiterlesen

Diagramme mit Daten aus Datenbanken in R: dbplot

Diagrammerstellung mit großen Datenmengen aus Datenbanken kann herausfordernd sein. Wie geht das möglichst effizient? Ad-hoc-Datenbank im Arbeitsspeicher Wir nutzen Daten über weltweite Chart-Erfolge von Songs und Alben und packen sie in eine Ad-hoc-Datenbank im Arbeitsspeicher. Das genügt, um die Ideen zu demonstrieren, und erspart Aufwand mit der Infrastruktur. Wie effizient die Diagrammerstellung erfolgt, hängt wesentlich … „Diagramme mit Daten aus Datenbanken in R: dbplot“ weiterlesen