Am 18.5.2021 wurde R Version 4.1.0 veröffentlicht, und sie brachte (fast) eine Revolution: Einen Pipe Operator, nativ in Base R eingebaut! Pipe Operator in R seit 2014: magrittr / dplyr Mit dem magrittr-Paket wurde 2014 der Pipe-Operator %>% in R zur Verfügung gestellt. Er hat sich rasch durchgesetzt und erfreut sich sehr großer Beliebtheit. Viele … „R 4.1.0: Base R Pipe! |>“ weiterlesen
Schlagwort: data.table
Doubletten ausschließen in R: unique() und wie man es schneller macht
Eine Kundin erzählte mir kürzlich, dass sie die Base R-Funktion unique() nutzt, um Doubletten aus ihren Daten auszuschließen. Sie erhält damit das gewünschte Resultat, allerdings sei ihr Code zu langsam. Zwei Ideen kamen mir, den Code zu beschleunigen: 1. Statt alle Spalten bei der Suche nach Doubletten zu berücksichtigen, müsste eine Auswahl an Spalten genügen … „Doubletten ausschließen in R: unique() und wie man es schneller macht“ weiterlesen
data.table vs. dplyr und dtplyr: Benchmarks
Zwei der populärsten Pakete zur Datenaufbereitung in R sind data.table (Matt Dowle, Arun Srinivasan, viele Mitarbeiter) und dplyr (Hadley Wickham, viele Mitarbeiter). Während data.table zu Recht den Ruf hat, sehr schnell zu sein, hat dplyr vielen den Einstieg in R enorm erleichtert. Geschwindigkeitsvergleiche: data.table vs. dplyr – beachte dtplyr! Es gibt bereits seit Jahren eine … „data.table vs. dplyr und dtplyr: Benchmarks“ weiterlesen
Excel-Datensätze in R laden: Geschwindigkeits-Test verschiedener R-Pakete
Welche Möglichkeiten gibt es, große Excel-Datensätze schnell in R zu laden? Wir verwenden einen Beispiel-Datensatz mit 29 Variablen (Spalten) und 2.000 bzw. 10.000 Zeilen (Fällen). Das R-Paket gdata Als ich zum ersten Mal Exceldaten in R laden wollte, stieß ich auf das gdata-Paket. Es bietet zahlreiche Erweiterungen der R-Basisfunktionalität. Zum Import von Exceldaten wandelt es die … „Excel-Datensätze in R laden: Geschwindigkeits-Test verschiedener R-Pakete“ weiterlesen