Korrelation und Wirkungsrichtung: Markenimage und Marktanteil

Befunde von Korrelationsanalysen können auf mehrere Arten falsch interpretiert werden. In früheren Artikeln habe ich bereits auf Scheinkorrelationen, verdeckte Korrelationen und Kausalinterpretationen hingewiesen. Eine weitere Möglichkeit bietet die Frage nach der Wirkungsrichtung. Korrelationsanalysen sind symmetrisch – A korreliert mit B genau so stark wie B mit A. In welcher Richtung der Einfluss tatsächlich ausgeübt wird, … „Korrelation und Wirkungsrichtung: Markenimage und Marktanteil“ weiterlesen

Regressionsmodelle: R², Zielsetzung / Denkmodelle

Meines Erachtens gibt es zwei recht unterschiedliche Arten, mit Regressionsmodellen umzugehen. Das „empiristische“ Vorgehen Die erste, die ich wesentlich häufiger antreffe, geht von der Vorstellung aus: Regressionsmodelle sind dafür da, Zusammenhänge möglichst genau zu „erklären“ bzw. möglichst gute Prognosen zu erstellen. In dieser Denkweise ist R² (der erklärte Varianzanteil) das entscheidende Gütemaß. Wenn Studien vorgestellt werden, … „Regressionsmodelle: R², Zielsetzung / Denkmodelle“ weiterlesen

Korrelation – Cartoon: Krebs verursacht Handies

Schön, wenn Statistik, die im Ruf steht, eher „trocken“ zu sein, auf nette Weise veranschaulicht wird. Besonders gelungen finde ich hier den Webcomic xkcd* – „A webcomic of romance, sarcasm, math, and language„. Einer meiner Favoriten beschreibt den Zusammenhang zwischen Handynutzung und Krebs und ist ein Update zu Korrelation und Kausalität: Wieder eine große Studie, die nicht … „Korrelation – Cartoon: Krebs verursacht Handies“ weiterlesen

Verdeckte Korrelation

Neben Scheinkorrelationen gibt es auch verdeckte Korrelationen: Es besteht tatsächlich ein Zusammenhang zwischen zwei Merkmalen, die statistische Korrelation ist jedoch nahe 0. Grund: eine intervenierende Variable verdeckt den Zusammenhang. Fiktives Beispiel: Es wird untersucht, welchen Einfluss ein unterschiedlich intensiver Kontakt mit einer bestimmten Tabakwerbung auf das Rauchverhalten von Jugendlichen ausübt. Die Korrelation ist überraschenderweise 0. … „Verdeckte Korrelation“ weiterlesen

Korrelation und Kausalität: Steffi Graf und Boris Becker als Auslöser der Wende in der DDR?

Korrelation: Zusammenhang zwischen (meist zwei) Merkmalen Kausalität: Annahme, dass eines der Merkmale die Ursache für das andere ist Um einen Kausalzusammenhang zu begründen, reicht es nicht aus, auf das gemeinsame Auftreten von zwei Ereignissen zu verweisen. Um eine wissenschaftliche Erklärung zu liefern, muss man auch einen Mechanismus angeben, der zeigt, wie ein Merkmal / Ereignis … „Korrelation und Kausalität: Steffi Graf und Boris Becker als Auslöser der Wende in der DDR?“ weiterlesen

Korrelation: Pearson vs. Spearman

Sollten Zusammenhänge zwischen zwei mindestens ordinal skalierten Variablen mit dem Korrelationskoeffizienten nach Pearson (für intervallskalierte Merkmale) oder mit der Spearman’schen Rangkorrelation ermittelt werden? In der Praxis unterscheiden sich die Ergebnisse oft nur geringfügig. Selten kommt man bei der Korrelation zu unterschiedlichen Aussagen – und wenn, dann ist das eine Maß knapp über und das andere … „Korrelation: Pearson vs. Spearman“ weiterlesen

Warum multivariate Methoden? Für kommerzielle Forschung reichen doch Kreuztabellen!

Der Kunde muss die Analyse verstehen können! Dieses Argument habe ich schon öfter zu hören bekommen. Folgendes Beispiel mag zeigen, warum multivariate Verfahren durchaus angemessen sein können. Annahme: Jugendliche mit höherer Sportorientierung ernähren sich gesünder als Jugendliche mit geringerer Sportorientierung. Lässt sich diese Annahme anhand vorliegender Befragungsdaten bestätigen? Korrelationsanalyse [man könnte auch Mittelwerte bilden und in … „Warum multivariate Methoden? Für kommerzielle Forschung reichen doch Kreuztabellen!“ weiterlesen