R 4.1.0: Base R Pipe! |>

Am 18.5.2021 wurde R Version 4.1.0 veröffentlicht, und sie brachte (fast) eine Revolution: Einen Pipe Operator, nativ in Base R eingebaut! Pipe Operator in R seit 2014: magrittr / dplyr Mit dem magrittr-Paket wurde 2014 der Pipe-Operator %>% in R zur Verfügung gestellt. Er hat sich rasch durchgesetzt und erfreut sich sehr großer Beliebtheit. Viele … „R 4.1.0: Base R Pipe! |>“ weiterlesen

Diagramme mit Daten aus Datenbanken in R: dbplot

Diagrammerstellung mit großen Datenmengen aus Datenbanken kann herausfordernd sein. Wie geht das möglichst effizient? Ad-hoc-Datenbank im Arbeitsspeicher Wir nutzen Daten über weltweite Chart-Erfolge von Songs und Alben und packen sie in eine Ad-hoc-Datenbank im Arbeitsspeicher. Das genügt, um die Ideen zu demonstrieren, und erspart Aufwand mit der Infrastruktur. Wie effizient die Diagrammerstellung erfolgt, hängt wesentlich … „Diagramme mit Daten aus Datenbanken in R: dbplot“ weiterlesen

R-Projekte vor Paket-Updates schützen: renv

„Never change a running system!“„Ändere nie ein System, das funktioniert!“ In aller Regel ist es eine gute Idee, Software aktuell zu halten: also etwa bei R, RStudio und Erweiterungspaketen Updates mitzunehmen. Manchmal haben Updates jedoch die unangenehme Nebenwirkung, bisher funktionierenden Code zu „brechen“. Beispiel: Interaktives Dashboard funktioniert nicht mehr nach dplyr-Update Im Video zeige ich … „R-Projekte vor Paket-Updates schützen: renv“ weiterlesen

Doubletten ausschließen in R: unique() und wie man es schneller macht

Eine Kundin erzählte mir kürzlich, dass sie die Base R-Funktion unique() nutzt, um Doubletten aus ihren Daten auszuschließen. Sie erhält damit das gewünschte Resultat, allerdings sei ihr Code zu langsam. Zwei Ideen kamen mir, den Code zu beschleunigen: 1. Statt alle Spalten bei der Suche nach Doubletten zu berücksichtigen, müsste eine Auswahl an Spalten genügen … „Doubletten ausschließen in R: unique() und wie man es schneller macht“ weiterlesen

data.table vs. dplyr und dtplyr: Benchmarks

Zwei der populärsten Pakete zur Datenaufbereitung in R sind data.table (Matt Dowle, Arun Srinivasan, viele Mitarbeiter) und dplyr (Hadley Wickham, viele Mitarbeiter). Während data.table zu Recht den Ruf hat, sehr schnell zu sein, hat dplyr vielen den Einstieg in R enorm erleichtert. Geschwindigkeitsvergleiche: data.table vs. dplyr – beachte dtplyr! Es gibt bereits seit Jahren eine … „data.table vs. dplyr und dtplyr: Benchmarks“ weiterlesen

Textantworten (offene Nennungen) automatisch zuordnen in R nach Ähnlichkeit

Wie kann man Textantworten automatisch in R codieren, wenn es viele ähnliche, aber nicht exakt gleiche Einträge gibt?

Mit dem R-Paket tidystringdist!

Wie kann man Textantworten automatisch in R codieren, wenn es viele ähnliche, aber nicht exakt gleiche Einträge gibt?

Mit dem R-Paket tidystringdist!

Textantworten (offene Nennungen) codieren mit R: stringr und regex

Oft wird ein großer Teil der Projektzeit nicht für die spannenden Modelle, sondern für die meist etwas weniger spannend empfundene Datenaufbereitung verwendet. Ein typischer Stolperstein dabei ist die Codierung von Textantworten (offene Nennungen). Wie können wir uns diese Arbeit mit R erleichtern? Anhand eines einfachen Beispiels („Warum treiben Sie Sport?“) beginnen wir mit einer Zuordnung … „Textantworten (offene Nennungen) codieren mit R: stringr und regex“ weiterlesen

R-Programmierung: Was ist %>% ? dplyr vs. Base R

Neu im Mai 2021: Die Base R Pipe |> – zum Blogbeitrag Was bedeutet die sonderbar anmutende Zeichenkombination %>% , die man seit ein paar Jahren häufig in R-Skripten findet? Woher kommt sie und wie können wir sie nutzen, um eleganteren und besser lesbaren R-Code zu schreiben? R und moderne Kunst: René Magritte R inspiriert … „R-Programmierung: Was ist %>% ? dplyr vs. Base R“ weiterlesen

R-Zertifizierung: Data Manipulation with R Track (DataCamp)

Dritter „Skill Track“ abgeschlossen: Datenaufbereitung mit R (Data Manipulation with R). Er umfasst vier Kurse. Zwei fehlten mir zuletzt noch: Exploratory Data Analysis in R: Case Study (Explorative Datenanalyse: Fallbeispiel) sowie Joining Data in R with dplyr. Darin ging es ausführlich um verschiedene Möglichkeiten, Daten zusammenzuführen bzw. anhand anderer Daten zu filtern. Wer schon seit … „R-Zertifizierung: Data Manipulation with R Track (DataCamp)“ weiterlesen

R Zertifizierung: Funktionen programmieren – Writing functions in R (DataCamp, Hadley und Charlotte Wickham)

Learning from the best: Dieser DataCamp-Kurs wurde tatsächlich von Hadley Wickham selbst entwickelt, zusammen mit seiner Schwester Charlotte Wickham. Die allermeisten R-Anwender werden schon nach kurzer Zeit auf den Namen Hadley Wickham stoßen, hat er doch zahlreiche R-Erweiterungs-Pakete programmiert (er soll bereits an 55 Paketen mitgewirkt haben! Tendenz steigend), darunter einige der Bekanntesten: ggplot2, dplyr, … „R Zertifizierung: Funktionen programmieren – Writing functions in R (DataCamp, Hadley und Charlotte Wickham)“ weiterlesen