Datenvisualisierung: Fundamentals of Data Visualization von Claus O. Wilke

2019 legte Claus O. Wilke mit Fundamentals of Data Visualization ein sehr lesenswertes Buch über Datenvisualisierung vor, das einige Vorzüge gegenüber vergleichbaren Werken bietet: Wer es gerne physisch in Papierform in der Hand hält, kann es selbstverständlich käuflich erwerben. Es steht jedoch auch kostenlos online im Volltext zur Verfügung. Damit folgt es dem Beispiel von … „Datenvisualisierung: Fundamentals of Data Visualization von Claus O. Wilke“ weiterlesen

Fehlwerte visualisieren in R: Das naniar-Paket

Fehlwerte können große Herausforderungen in der Datenanalyse darstellen. Warum fehlen Datenpunkte? Welche Eigenschaften weisen diese Fälle auf im Vergleich zu Fällen, deren Daten vollständig vorliegen? Gibt es Muster, oder fehlen Daten „zufällig“? Visualisierung kann die Beantwortung solcher Fragen sehr vereinfachen. Das naniar-Paket von Nicholas Tierney bietet dafür sehr praktische Funktionen und ist eng mit dem … „Fehlwerte visualisieren in R: Das naniar-Paket“ weiterlesen

Diagramme mit Daten aus Datenbanken in R: dbplot

Diagrammerstellung mit großen Datenmengen aus Datenbanken kann herausfordernd sein. Wie geht das möglichst effizient? Ad-hoc-Datenbank im Arbeitsspeicher Wir nutzen Daten über weltweite Chart-Erfolge von Songs und Alben und packen sie in eine Ad-hoc-Datenbank im Arbeitsspeicher. Das genügt, um die Ideen zu demonstrieren, und erspart Aufwand mit der Infrastruktur. Wie effizient die Diagrammerstellung erfolgt, hängt wesentlich … „Diagramme mit Daten aus Datenbanken in R: dbplot“ weiterlesen

Farbskalen in R auswählen per App: Der Palette Explorer (tmaptools)

Eine Farbskala für eine Datenvisualisierung auszuwählen ist keine triviale Aufgabe. Diese Shiny App von Martijn Tennekes kann eine große, bequeme Hilfe sein. Farbskalen auswählen: Die App starten Die App zur Auswahl von Farbskalen ist im R-Paket tmaptools enthalten. Der Anwender kann entscheiden, ob er das Paket laden oder die App direkt starten möchte. (Voraussetzung ist … „Farbskalen in R auswählen per App: Der Palette Explorer (tmaptools)“ weiterlesen

ggplot2 leicht gemacht: Grafiken per Maus dank esquisse!

ggplot2 ist ein mächtiges Werkzeug, um professionelle Diagramme zu erstellen. Für Einsteiger ist die Syntax nicht immer intuitiv. Abhilfe schafft eine grafische Oberfläche, mit der man Variablen mit der Maus auswählen und in Felder schieben kann („drag and drop“): esquisse. So erhält man schnell aussagekräftige Diagramme und kann Daten visuell erforschen, ohne Programmcode schreiben zu … „ggplot2 leicht gemacht: Grafiken per Maus dank esquisse!“ weiterlesen

Wie man Boxplots in R informativer gestaltet (ggplot2 und mehr)

Boxplots geben einen schnellen Überblick über Verteilungen. Wie kann man sie informativer gestalten als das Standard-Boxplot? Hier geht es um Ideen mit ggplot2 sowie einigen Erweiterungspaketen. Zum Einstieg in ggplot2 siehe die folgenden Beiträge: ggplot2: Einführung in die drei Basisschichten – Daten, Ästhetiken, Geometrien ggplot2: Die vier fortgeschrittenen Schichten ggplot2 leicht gemacht: Grafiken per Maus … „Wie man Boxplots in R informativer gestaltet (ggplot2 und mehr)“ weiterlesen

Interaktive Kontrollelemente für R-Diagramme ohne Shiny! plotly, crosstalk

Wusstest Du, dass Du keine Shiny App programmieren musst, um Diagramme mit Checkboxen, Drop-Down-Feldern und Schiebereglern zu versehen für bequeme visuelle Daten-Exploration? Shiny ist zweifellos ein großartiges Werkzeug – hat jedoch den Nachteil, dass R laufen muss, um die Shiny App zu bedienen – sei es auf einem Webserver oder auf einem lokalen Rechner. plotly … „Interaktive Kontrollelemente für R-Diagramme ohne Shiny! plotly, crosstalk“ weiterlesen

Zwei interaktive Diagramme in R verknüpfen ohne Shiny: plotly, crosstalk

Bis vor kurzem habe ich das plotly-Paket von Carson Sievert fast nur mit der ggploty()-Funktion genutzt. Doch plotly kann so viel mehr! Hier verknüpfen wir zwei interaktive Diagramme, sodass man aus einem Übersichtsdiagramm Gruppen auswählen kann, die dann in einem detaillierteren Diagramm automatisch hervorgehoben werden. Präsentation per Dashboard: flexdashboard Die Analyse ist in einem Dashboard … „Zwei interaktive Diagramme in R verknüpfen ohne Shiny: plotly, crosstalk“ weiterlesen

Große Datenmengen visualisieren mit R, ggplot2 und trelliscopejs

Wie kann man große Datenmengen in R so darstellen, dass sie gut lesbar sind und viele Informationen preisgeben? „Große Datenmengen“ verstehen wir hier im Sinne von „viele Untergruppen“, nicht unbedingt im Sinne von vielen Gigabyte. Wer versiert ist, denkt vielleicht an eine Shiny App, die große Flexibilität und viele Nutzereinstellungen erlaubt. Wir suchen heute jedoch … „Große Datenmengen visualisieren mit R, ggplot2 und trelliscopejs“ weiterlesen

Storytelling mit R und ggplot2: Länderfinanzausgleich

ggplot2 ist ein mächtiges Werkzeug, um ansprechende Grafiken zu erstellen. Will man Zuhörer oder Leser „mitnehmen“, empfiehlt es sich, nicht nur Daten zu präsentieren, sondern auch eine Geschichte damit zu erzählen. Unser Storytelling-Beispiel bezieht sich auf den Länderfinanzausgleich. Unter Storytelling verstehe ich hier: Bestimmte Aspekte hervorheben, die ich als Bearbeiter wichtig finde, um den Blick … „Storytelling mit R und ggplot2: Länderfinanzausgleich“ weiterlesen