Korrelation und Wirkungsrichtung: Markenimage und Marktanteil

Befunde von Korrelationsanalysen können auf mehrere Arten falsch interpretiert werden. In früheren Artikeln habe ich bereits auf Scheinkorrelationen, verdeckte Korrelationen und Kausalinterpretationen hingewiesen. Eine weitere Möglichkeit bietet die Frage nach der Wirkungsrichtung. Korrelationsanalysen sind symmetrisch – A korreliert mit B genau so stark wie B mit A. In welcher Richtung der Einfluss tatsächlich ausgeübt wird, … „Korrelation und Wirkungsrichtung: Markenimage und Marktanteil“ weiterlesen

Regressionsmodelle: R², Zielsetzung / Denkmodelle

Meines Erachtens gibt es zwei recht unterschiedliche Arten, mit Regressionsmodellen umzugehen. Das „empiristische“ Vorgehen Die erste, die ich wesentlich häufiger antreffe, geht von der Vorstellung aus: Regressionsmodelle sind dafür da, Zusammenhänge möglichst genau zu „erklären“ bzw. möglichst gute Prognosen zu erstellen. In dieser Denkweise ist R² (der erklärte Varianzanteil) das entscheidende Gütemaß. Wenn Studien vorgestellt werden, … „Regressionsmodelle: R², Zielsetzung / Denkmodelle“ weiterlesen

Verdeckte Korrelation

Neben Scheinkorrelationen gibt es auch verdeckte Korrelationen: Es besteht tatsächlich ein Zusammenhang zwischen zwei Merkmalen, die statistische Korrelation ist jedoch nahe 0. Grund: eine intervenierende Variable verdeckt den Zusammenhang. Fiktives Beispiel: Es wird untersucht, welchen Einfluss ein unterschiedlich intensiver Kontakt mit einer bestimmten Tabakwerbung auf das Rauchverhalten von Jugendlichen ausübt. Die Korrelation ist überraschenderweise 0. … „Verdeckte Korrelation“ weiterlesen