Für logistische Regressionsmodelle wurde eine Vielzahl von Gütemaßen entwickelt: z. B. McFadden’s Pseudo-R², McKelvey & Zavoina’s R², ML (Cox-Snell) R², Cragg-Uhler (Nagelkerke) R², nicht adjustiertes Count R², Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC). Im Gegensatz zur linearen Regression gibt es jedoch kein Maß mit einer ähnlich eindeutigen Interpretation im Sinne erklärter Varianz, und … „Logistische Regression: R²“ weiterlesen