Mit dem R-Paket ggstatsplot kann man sehr leicht Gruppenvergleiche mit statistischen Kennzahlen grafisch darstellen. Unterstützt werden Tests für abhängige und unabhängige Stichproben, parametrische und nichtparametrische Tests, robuste Tests sowie Bayes-Verfahren.
Mit dem R-Paket ggstatsplot kann man sehr leicht Gruppenvergleiche mit statistischen Kennzahlen grafisch darstellen. Unterstützt werden Tests für abhängige und unabhängige Stichproben, parametrische und nichtparametrische Tests, robuste Tests sowie Bayes-Verfahren.
Zeitreihenanalyse ist ein Spezialthema, das in R von spezialisierten Paketen abgedeckt wurde und wird. So entstand eine Nische, die sich weitgehend unabhängig von neueren R-Paketen zur Datenanalyse entwickelte. tidyquant von Matt Dancho und Davis Vaughan baut eine Brücke zwischen zeitreihen-spezifischen Paketen wie quantmod, xts, zoo, PerformancAnalytics und TTR einerseits sowie dem tidyverse andererseits mit Paketen … „Zeitreihen visualisieren in R: tidyquant / Amazon-Kurse in der Pandemie“ weiterlesen
Heute will ich zwei Fliegen mit einer Klappe schlagen: Einen Fortschrittsbalken in R implementieren R-Code parallel ausführen (d. h. auf mehreren Prozessorkernen gleichzeitig) R-Pakete: progressr und future Für die Umsetzung des Fortschrittsbalkens habe ich mich für progressr von Henrik Bengtsson entschieden. Es bietet eine leistungsfähige API (Schnittstelle), sodass man nicht nur im Paket enthaltene Fortschrittsbalken … „Fortschrittsbalken anzeigen und Code parallelisieren in R: progressr und future“ weiterlesen
ggplot2 ist der de-facto-Standard, um professionelle, ansprechende Grafiken in R zu erstellen. Heute sehen wir uns die drei Basisschichten an, die für jede ggplot2-Grafik erforderlich sind. ggplot2 basiert auf der Grammatik der grafischen Darstellung (Grammar of Graphics), die auf Leland Wilkinson zurückgeht. Er beschrieb das Konzept unabhängig von R in seinem Buch von 1999 (siehe … „ggplot2: Einführung in die drei Basisschichten – Daten, Ästhetiken, Geometrien“ weiterlesen
Am 18.5.2021 wurde R Version 4.1.0 veröffentlicht, und sie brachte (fast) eine Revolution: Einen Pipe Operator, nativ in Base R eingebaut! Pipe Operator in R seit 2014: magrittr / dplyr Mit dem magrittr-Paket wurde 2014 der Pipe-Operator %>% in R zur Verfügung gestellt. Er hat sich rasch durchgesetzt und erfreut sich sehr großer Beliebtheit. Viele … „R 4.1.0: Base R Pipe! |>“ weiterlesen
Was spricht gegen Powerpoint, wenn es darum geht, Ergebnisse von Datenanalysen zu präsentieren? Hier geht es mir um drei Aspekte: Automatisierung und Reproduzierbarkeit, Dateiformate, Dateigrößen. Powerpoint ist nicht schlecht! Es geht mir überhaupt nicht darum, Powerpoint schlecht zu machen. Ich halte es für ein großartiges Werkzeug. Es ist einfach zu nutzen, gut geeignet für Präsentationen, … „Datenanalysen präsentieren: Warum ich nicht Powerpoint verwende“ weiterlesen
Diagramme zu erstellen und zu speichern kann viel Zeit in Anspruch nehmen, vor allem bei großen Datenmengen oder wenn sehr viele Diagramme automatisiert zu generieren sind. Wie kann man den Vorgang für Diagramme mit dem beliebten ggplot2-Paket beschleunigen? Das ragg-Paket von Thomas Lin Pedersen Das ragg-Paket von Thomas Lin Pedersen ist eine R-Implementierung der AGG … „Diagramm-Erstellung mit ggplot2 beschleunigen: Das ragg-Paket“ weiterlesen
Bei einer R-Schulung wurde ich als Wessi entlarvt in einer Situation, in der ich das absolut nicht erwartet hätte. Es ging ums Runden. Hättet Ihr das gewusst? Habt Ihr ähnliche Überraschungen mit interkulturellen Unterschieden in vermeintlich unverdächtigen Situationen erlebt? Kaufmännisches vs. mathematisches Runden Zu der Zeit hatte ich mich noch nicht weiter mit den Details … „Als Wessi entlarvt bei einer R-Schulung!“ weiterlesen
Diagrammerstellung mit großen Datenmengen aus Datenbanken kann herausfordernd sein. Wie geht das möglichst effizient? Ad-hoc-Datenbank im Arbeitsspeicher Wir nutzen Daten über weltweite Chart-Erfolge von Songs und Alben und packen sie in eine Ad-hoc-Datenbank im Arbeitsspeicher. Das genügt, um die Ideen zu demonstrieren, und erspart Aufwand mit der Infrastruktur. Wie effizient die Diagrammerstellung erfolgt, hängt wesentlich … „Diagramme mit Daten aus Datenbanken in R: dbplot“ weiterlesen
Hinweispflicht zu Cookies
Webseitenbetreiber müssen, um Ihre Webseiten DSGVO konform zu publizieren, ihre Besucher auf die Verwendung von Cookies hinweisen und darüber informieren, dass bei weiterem Besuch der Webseite von der Einwilligung des Nutzers
in die Verwendung von Cookies ausgegangen wird.
Der eingeblendete Hinweis Banner dient dieser Informationspflicht.
Sie können das Setzen von Cookies in Ihren Browser Einstellungen allgemein oder für bestimmte Webseiten verhindern.
Eine Anleitung zum Blockieren von Cookies finden Sie
hier.