SPSS Modeler: Maschinenlernen vs. Statistische Modelle

Statistische Modelle beruhen auf mathematische Gleichungen, wobei ein Algorithmus die vorgegebenen Parameter schätzt. Moderner und flexibler sind Techniken zum Maschinenlernen. Sie werden auf Basis minimaler Anforderungen an die Modellstruktur und minimalen Annahmen für das Modell berechnet. Die Form der Beziehungen wird während des Lernprozesses bestimmt. Beispiel: Lineare Regression vs. Neuronales Netzwerk (Neural Network) Falls sich … „SPSS Modeler: Maschinenlernen vs. Statistische Modelle“ weiterlesen

R² in logistischen Regressionsmodellen

Für logistische Regressionsmodelle wurde eine Vielzahl von Gütemaßen entwickelt: z. B. McFadden’s Pseudo-R², McKelvey & Zavoina’s R², ML (Cox-Snell) R², Cragg-Uhler (Nagelkerke) R², nicht adjustiertes Count R², Akaike’s Information Criterion (AIC), Bayesian Information Criterion (BIC). Im Gegensatz zur linearen Regression gibt es jedoch kein Maß mit einer ähnlich eindeutigen Interpretation im Sinne erklärter Varianz, und … „R² in logistischen Regressionsmodellen“ weiterlesen

Regressionsmodelle: R², Zielsetzung / Denkmodelle

Meines Erachtens gibt es zwei recht unterschiedliche Arten, mit Regressionsmodellen umzugehen. Das „empiristische“ Vorgehen Die erste, die ich wesentlich häufiger antreffe, geht von der Vorstellung aus: Regressionsmodelle sind dafür da, Zusammenhänge möglichst genau zu „erklären“ bzw. möglichst gute Prognosen zu erstellen. In dieser Denkweise ist R² (der erklärte Varianzanteil) das entscheidende Gütemaß. Wenn Studien vorgestellt werden, … „Regressionsmodelle: R², Zielsetzung / Denkmodelle“ weiterlesen

Je mehr Störche, desto mehr Kinder

Ein Klassiker der Statistik … Man kann tatsächlich nachweisen, dass in Regionen mit mehr Störchen auch mehr Kinder „auf die Welt kommen“. Ist damit bewiesen, dass Störche Kinder bringen? Medizinisch-biologische Erkenntnisse sprechen dagegen – es gibt andere, gut belegte Theorien dazu, wie Kinder entstehen und von wo sie „gebracht“ werden. So weit, so klar – … „Je mehr Störche, desto mehr Kinder“ weiterlesen

Interaktionseffekt / Moderatoreffekt

Interaktionseffekte (Moderatoreffekte) werden oft als schwierig nachvollziehbar empfunden. Kurz gesagt ist der Effekt einer Variablen auf eine andere unterschiedlich, je nach Zustand einer weiteren. Klingt zu abstrakt? Neu: Moderatoreffekte im Video   In einer Studie fand ich ein schönes Beispiel dafür. Jemand hatte ein Balkenwaagenexperiment mit 2- bis 4-jährigen Kindern durchgeführt. Es gab zwei Versuchsanordnungen: … „Interaktionseffekt / Moderatoreffekt“ weiterlesen

Warum multivariate Verfahren? Für kommerzielle Forschung reichen doch Kreuztabellen!

Der Kunde muss die Analyse verstehen können! Dieses Argument habe ich schon öfter zu hören bekommen. Folgendes Beispiel mag zeigen, warum multivariate Verfahren durchaus angemessen sein können. Annahme: Jugendliche mit höherer Sportorientierung ernähren sich gesünder als Jugendliche mit geringerer Sportorientierung. Lässt sich diese Annahme anhand vorliegender Befragungsdaten bestätigen? Korrelationsanalyse [man könnte auch Mittelwerte bilden und in … „Warum multivariate Verfahren? Für kommerzielle Forschung reichen doch Kreuztabellen!“ weiterlesen