SPSS Modeler – Automatische Datenvorbereitung: Was passiert da?

Der SPSS Modeler, die High-End-Statistik-Lösung von IBM SPSS, wartet mit einem vielversprechenden Knoten für die Datenvorbereitung auf: der Automatischen Datenvorbereitung (ADP, Automatic Data Preparation). Datenvorbereitung ist oft der zeitaufwändigste Arbeitsschritt Wer sich schon mal intensiver mit Datenauswertung oder data mining beschäftigt hat, hat sehr wahrscheinlich die Erfahrung gemacht, dass die Datenvorbereitung oft der zeitintensivste Arbeitsschritt … „SPSS Modeler – Automatische Datenvorbereitung: Was passiert da?“ weiterlesen

13 Möglichkeiten, Korrelationen zu interpretieren

Korrelation – klar, kenne ich? OK: Auf wie viele Arten können Sie Korrelationskoeffizienten interpretieren? In einem Fachartikel in The American Statistician* werden nicht weniger als 13 Möglichkeiten genannt. Es geht dabei durchgängig um den Pearson’schen Korrelationskoeffizienten, nicht um die Rangkorrelation nach Spearman oder um Unterschiede zwischen beiden. Algebraische und trigonometrische Interpretationen ohne Verteilungsannahmen Korrelation als … „13 Möglichkeiten, Korrelationen zu interpretieren“ weiterlesen

Moderatoreffekte interpretieren und grafisch darstellen

Viele, die sich mit Statistik beschäftigen und dabei irgendwann auf sogenannte Moderatoreffekte stoßen, haben damit Schwierigkeiten. Wie man einen Moderatoreffekt „technisch“ prüft, kann man nachlesen (vgl. den Beitrag Interaktionseffekt): Man nimmt die unabhängige Variable (UV), den Moderator (der sich „technisch“ nicht von der Behandlung einer UV unterscheidet – die Bezeichnungen werden lediglich aus der Theorie … „Moderatoreffekte interpretieren und grafisch darstellen“ weiterlesen

Methodenberatung: Welcher statistische Test passt zu meiner Fragestellung und meinen Daten?

Die Universität Zürich bietet eine empfehlenswerte Hilfestellung bei der Auswahl des geeigneten statistischen Tests bzw. der passenden multivariaten Analysemethode. In einem Entscheidungsbaum sind Unterschiedstests und Verfahren für Zusammenhangs- und Interdependenzanalysen dargestellt; farbliche Abstufungen berücksichtigen das Skalenniveau (nominalskaliert, ordinalskaliert oder intervallskaliert); zusätzlich wird auch dargestellt, ob normalverteilte Daten vorausgesetzt werden oder ob es sich um ein … „Methodenberatung: Welcher statistische Test passt zu meiner Fragestellung und meinen Daten?“ weiterlesen

Moderne (Online-) Marktforschung: Von „Big Data“ zu „Data Integration“

Einige Stichpunkte zu aktuellen Trends und Herausforderungen der Marktforschung speziell im Kontext der Online-Befragungen: Befragungen werden zunehmend auf mobilen Endgeräten durchgeführt; Zahl der Befragten, die per Smartphone oder Tablet auf CAWI-Seiten (Computer Assisted Web Interviewing) zugreifen, hat sich von 2011 auf 2012 vervierfacht; aktueller Anteil mobiler Endgeräte an den Befragungen von Lightspeed Research: 5% technische … „Moderne (Online-) Marktforschung: Von „Big Data“ zu „Data Integration““ weiterlesen

Mediatoranalyse

Ein Mediatoreffekt liegt vor, wenn die Beziehung zwischen X und Y durch einen Mediator Z „vermittelt“ wird. Ein Beispiel (nach Urban und Mayerl): Man nimmt an, dass Menschen mit zunehmendem Alter autoritärer werden, weil sie nach und nach mehr Verantwortung übernehmen müssen. Eine weitere Annahme lautet, dass höherer Autoritarismus mit höherer Ausländer-Ablehnung einher geht. Somit … „Mediatoranalyse“ weiterlesen

Gehaltsunterschied zwischen Frauen und Männern im Osten geringer

Laut Statistischem Bundesamt verdienen Männer in Deutschland durchschnittlich 23% mehr als Frauen. Der Lohnunterschied ist jedoch regional sehr unterschiedlich: in Westdeutschland beträgt er 25%, im Osten nur 6%. Die Suche nach Gründen ist ein klassischer Anwendungsfall für multivariate Verfahren mit Drittvariablenkontrolle, z. B. Regressionsanalysen. Kontrolliert man das Einkommen nach Art der Tätigkeit und Ausbildung, so … „Gehaltsunterschied zwischen Frauen und Männern im Osten geringer“ weiterlesen

Scheinkorrelation vs. intervenierende Variable

In anderen Artikeln habe ich bereits auf Scheinkorrelationen hingewiesen, z. B. den statistischen Klassiker: Je mehr Störche es in einer Region gibt, desto mehr Kinder gibt es dort auch. Typisch für eine Scheinkorrelation ist: betrachtet man lediglich den Zusammenhang zwischen zwei Variablen, ohne auf weitere Merkmale zu achten, so ist dieser statistisch bedeutsam. Die Gültigkeit … „Scheinkorrelation vs. intervenierende Variable“ weiterlesen

Faktor / Faktoren

Der Begriff Faktor ist aus der Alltagssprache geläufig. Z. B. lese ich in einem empfehlenswerten Zeit-Artikel von Harald Martenstein, „Die Taktik des Beleidigens“, den Satz: „Man kann sagen, dass Beleidigungen im Fußball ein spielentscheidender Faktor geworden sind.“ (Hinweis auf das WM-Finale 2006 und Zidanes Platzverweis.) Ein Faktor ist somit eine Ursache, die (zusammen mit anderen) … „Faktor / Faktoren“ weiterlesen

SPSS Syntaxbeispiel: Makros für Regressionsanalysen

Aufgabenstellung: Eine Reihe von Einzelregressionen mit jeweils einer unabhängigen Variablen berechnen. Einfache Lösung: Für jede unabängige Variable die Regressionssyntax anlegen. Z. B. so: REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT AV /METHOD=enter UV1. REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA /CRITERIA=PIN(.05) POUT(.10) /NOORIGIN /DEPENDENT AV /METHOD=enter UV2. Und so weiter … „SPSS Syntaxbeispiel: Makros für Regressionsanalysen“ weiterlesen